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Abstract 
Assessing students’ participation in science practices presents several challenges, especially 
when aiming to differentiate meaningful (vs. rote) forms of participation. In this study, we 
sought to use machine learning (ML) for a novel purpose in science assessment: developing a 
construct map for students’ consideration of generality, a key epistemic understanding that 
undergirds meaningful participation in knowledge-building practices. We report on our efforts to 
assess the nature of 845 students’ ideas about the generality of their model-based explanations 
through the combination of an embedded written assessment and a novel data analytic approach 
that combines unsupervised and supervised machine learning methods and human-driven, 
interpretive coding. We demonstrate how unsupervised machine learning methods, when coupled 
with qualitative, interpretive coding, were used to revise our construct map for generality in a 
way that allowed for a more nuanced evaluation that was closely tied to empirical patterns in the 
data. We also explored the application of the construct map as a framework for coding used as a 
part of supervised machine learning methods, finding that it demonstrates some viability for use 
in future analyses. We discuss implications for the assessment of students’ meaningful 
participation in science practices in terms of their considerations of generality, the role of 
unsupervised methods in science assessment, and combining machine learning and human-
driven approach for understanding students’ complex involvement in science practices. 
 

 
  



3 
COMBINING MACHINE LEARNING AND QUALITATIVE METHODS 

Combining machine learning and qualitative methods to elaborate students’ ideas about the 
generality of their model-based explanations 

 
Given the shifts in science learning and instruction involved, the vision for three-

dimensional learning put forth in the Next Generation Science Standards (NGSS; NGSS Lead 
States, 2013) in the United States (U.S.) provide a number of pressing assessment challenges 
(National Research Council [NRC], 2014). This vision emphasizes students’ participation in 
science practices (Dimension 1) as a means of making progress in building disciplinary core 
ideas (Dimension 3) and using crosscutting concepts (Dimension 2; NRC, 2012) to explain 
natural phenomena and propose engineering design solutions. Importantly, these three 
dimensions—practices, core ideas, and crosscutting concepts—are used by students in an 
integrated way to explain natural phenomena or develop engineering design solutions, an 
approach known as phenomenon-based teaching (Penuel et al., 2019). This integration requires a 
movement away from traditional assessment approaches that focus solely on content knowledge. 

In this way, the integrated three-dimensional nature (science practices, crosscutting 
concepts, and disciplinary core ideas) of the NGSS fully embraces the idea—and challenges—of 
generality: Cross-cutting (or generalized) concepts and disciplinary core ideas are to be widely 
utilized by students in their explanations of phenomena across many different specific content 
area contexts. At the same time, when students begin with specific contexts—as can be the case 
with phenomenon-based teaching and learning—it can be challenging to generalize from specific 
cases to broader principles or ideas (Kolodner, 1993; Lehrer, Schauble, & Petrosino, 2001). Last, 
practices are meant to be used flexibly and strategically across the varied contexts of scientific 
activity (Ford, 2015; Manz, 2015; Lehrer & Schauble, 2015). 

These goals of generalizability—that students develop cross-cutting knowledge, an 
understanding of core principles, and the flexible use of practices that can all be leveraged when 
encountering a new phenomenon or design challenge—suggest that the process of learning 
science is not only about moving towards a more general understanding but also is about flexibly 
moving between specific phenomena and more general principles (Berland & Crucet, 2016; 
Tabak & Reiser, 1999). In order to do this well, students need to have in mind some recognition 
of how their science learning lies in regards to its goals for generality (or specificity) as well as 
how and why they are engaging with those goals. In other words, their engagement in doing 
science needs to be meaningful: they should be meta-aware of the goals for why they are doing 
what they are doing. 

Importantly, both the goals of deeply understanding a case and of extracting a general 
idea are separate from a rote form of participation: following a procedure because that is what 
the teacher has told us to do today (Berland et al., 2016; Jiménez‐Aleixandre et al., 2000). For 
example, are students trying to deeply understand a specific case because knowing the details 
helps to articulate how and why the phenomenon occurs? Or, instead, are they identifying the 
details to fill in the blanks on a worksheet? Similarly, are students trying to understand a specific 
case so that they can extract from it a more general understanding that will help them explain and 
predict in more contexts, or are they going through the motions of “discovering” a general rule to 
recount for an exam? Regardless of whether students are working to generalize the particulars or 
are applying a general idea, one can imagine both meaningful and rote forms of participation. 

Some assessments of three-dimensional science learning aim to assess the dimensions in 
integration. These efforts have focused on developing construct maps for a single performance 
expectation (PE; a standard that combines practices, disciplinary content ideas, and crosscutting 
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concepts). While this approach is merited given the complexity of assessing three-dimensional 
learning, the result of such efforts is rubrics or scoring guides that provide detailed descriptions 
of what three-dimensional learning might look like in a given content area (e.g., DeBarger et 
al.,2013; Harris et al., 2019; Penuel et al., 2019), but many do not yet differentiate between 
meaningful versus rote forms of engagement. Moreover, most focus upon what students are 
doing—albeit with great nuance and value to the field (see Inkinen et al., 2020)—but do not 
capture the epistemic undergirding of why and how they are doing it (Manz, 2015).  

We take the stance that in order to capture meaningful (instead of rote) forms of science 
learning, we need to measure a construct other than specific content area knowledge or specific 
practices—even in an integrated way. Instead, we focus on measuring students’ epistemic 
considerations: ideas that support and bolster students’ participation in knowledge-building 
practices across content areas. These “how and why” understandings have been described using a 
range of terms, such as practical epistemologies (Sandoval, 2005), epistemic considerations 
(Berland, et al., 2016), or epistemic practices (Kelly, 2008; Manz, 2015); despite differences in 
terminology, they are generally accepted as important learning goals for students (Lehrer & 
Schauble, 2015). Notably, with few exceptions (c.f. Sandoval & Millwood, 2005), epistemic 
considerations have been studied through video records (e.g., Krist, 2020; Berland & Crucet, 
2016; Ryu & Sandoval, 2012) or domain-general survey instruments (e.g., Kuhn et al., 2000). 

In this paper, we present our efforts to assess students’ epistemic consideration of 
generality using embedded assessment questions: those asking students to write about their 
ongoing classroom activity. Although we have some understanding of how experts consider 
generality in their scientific practice (e.g., Chinn & Malhotra, 2002), we do not yet know what 
students might be thinking about or considering regarding the generality of their accounts. This 
is a key assessment issue in that gaining insight into students’ thinking about can help us to learn 
how they might progress towards that expert understanding. Moreover, because most efforts to 
assess students’ epistemic understandings have used video records—which may be necessary for 
documenting epistemic learning—assessing students’ consideration of generality at a scale that 
can facilitate assessments of many students over a long timescale remains out of reach. This 
tendency to use detailed video records raises an important assessment-related question: can we 
assess epistemic considerations in students’ written scientific work? Thus, our goal is to 
elaborate—to work out in detail—the construct of students’ consideration of generality, which 
we argue could provide insights into how to better measure students' meaningful participation in 
science practices. 

To do this, we leverage machine learning (or ML) methods as a tool for inductive pattern-
seeking of students’ consideration of generality while they are constructing model-based, 
scientific explanations. Specifically, our goal is to strategically use ML methods in conjunction 
with human coding to elaborate on the ideas students draw upon when we ask them to consider 
the generality of their model-based explanations. Our approach differs from many current 
applications of ML in science education that use ML to increase the efficiency or accuracy of 
coding once a scheme is already well defined (e.g., Gobert et al. 2015; Gerard, and Linn, 2016; 
Nehm et al. 2012; Pei et al., 2019). By focusing on the use of ML for the elaboration of a 
construct, we aim to advance a methodology that can be used at a different, earlier point in the 
analytic process. Thus, our research question is as follows: How can an approach that integrates 
ML methods and interpretive qualitative coding be used to elaborate students’ consideration of 
generality as a means of assessing students’ participation in science practices? 

Literature Review 
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Assessing Participation in Constructing Model-Based Explanations of Phenomena  
We focus on the science practice of constructing model-based explanations as central to 

science education (Schwarz et al., 2017). Though Developing and Using Models and 
Constructing Evidence-Based Explanations are delineated as distinct practices in the NGSS 
(NGSS Lead States, 2013) and the Framework for K-12 Science Education (NRC, 2012), they 
are often intertwined or used iteratively since both practices share a goal of explaining the 
natural world (Lehrer & Schauble, 2006; Passmore, Schwarz, & Mankowski, 2017). In this 
sense, we are interested in the epistemic dimensions undergirding students’ participation in 
knowledge-building—how and why they are justifying their claims, shaping the nature of their 
account, or determining a level of generality or specificity (Berland et al., 2016)—regardless of 
the particular structure or form of the knowledge product (i.e., the model or explanation). 

The most widely cited learning progression (LP) for modeling was developed by Schwarz 
and colleagues (2009); it is one that also is explicitly epistemic in nature. Rather than focusing 
on the structural forms of students’ models, their progression captures whether and how students 
understand models as generative tools for predicting and explaining and as changeable entities. 
These two dimensions make how students are considering various epistemic criteria as they 
make progress in each dimension explicit. For example, as students make progress in 
understanding models as changeable entities, the LP articulates differences in how they are 
considering the explanatory nature of their model in terms of whether they are making 
modifications with attention to how the explanatory power is improved. The LP also articulates 
differences in how students are justifying their models and, importantly, differences in how 
students are considering the generality of their model: whether it is a literal illustration of a 
specific phenomenon or whether it explains answers to questions about a group of phenomena. 

Other existing LPs for specific practices tend to focus more on the structural forms of the 
products. Also in terms of modeling, Zangori and colleagues (2015) present an LP that identifies 
five structural components that students’ models should ideally include: Components, Sequence, 
Explanatory Process, Mapping, and Principles. More sophisticated models include more of these 
components. Gotwals and Songer (2013) elaborate an LP for constructing evidence-based 
explanations using the popular Claim-Evidence-Reasoning (CER) instructional scaffold (McNeill 
et al., 2006). The levels of this progression capture the extent to which students produce various 
elements of the explanation (claim, evidence, and/or reasoning) independently or with varying 
degrees of support. 

However, if we look closely, the epistemic dimensions driving the utility of these 
structural forms are implicit in these LPs. The Gotwals and Songer (2013) progression attempts 
to capture how students consider justifying their accounts (i.e., considering evidence) as part of 
their explanation construction, and the Zangori et al. (2015) progression captures how students 
consider generality based upon whether students include a scientific principle that links the other 
parts of their model together, as well as how students consider the mechanistic nature of their 
model by the extent to which they include an articulation of an explanatory process.  

Thus, across LPs for the practices of developing models and constructing explanations, 
we see attention to how students are considering the epistemic criteria for justification, 
generality, and the mechanistic nature of their accounts, even when these epistemic 
considerations are not formalized within the LPs. Importantly, these progressions also implicitly 
assume that what is shifting is how students are considering epistemic criteria in their 
development and use of (model-based) explanatory accounts. An emphasis on a shift in how 
students are considering various epistemic criteria suggests that analytic attention to the form or 
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structure of the knowledge product is insufficient for capturing students’ understanding of the 
epistemic utility or rationale for developing that knowledge product. For example, it is possible 
for students to appropriate the forms of models or explanations (e.g., “I included evidence”) 
without necessarily understanding the epistemic utility for developing these knowledge products 
(e.g., “Because the worksheet had a slot for evidence.” (Berland et al., 2016; Gotwals & Songer, 
2013). Thus, simply looking at the product itself may not provide the grounds for researchers to 
understand students’ participation in science practices. 
Using Epistemic Criteria as a Metric for Students’ Participation in Science Practices 

We propose using students’ consideration of epistemic criteria as the focus for 
assessment of students’ participation in science practices. There is increasing evidence that 
students’ consideration of various epistemic criteria can shift over time through sustained 
participation in science learning. For example, studies of science classrooms have shown how 
students develop epistemic ideas about justification and evidence both within a single content-
area unit (Manz, 2012; Ryu & Sandoval, 2012) and across multiple science units (Krist, 2020). 
Similarly, empirical studies have characterized students’ epistemic ideas about the nature of the 
accounts they construct in terms of their mechanistic reasoning. The mechanistic sophistication 
of students’ accounts tends to increase over the course of a single content-area unit (e.g., Dickes 
et al., 2016; Duncan & Tseng, 2011). In addition, there is some evidence that these increases in 
mechanistic reasoning persist over time, even across different content area units (Authors, Krist, 
2020; Reiser et al., 2016), suggesting that students are learning something beyond specific 
content knowledge that supports mechanistic account construction. 

What is less established through past research—though still implicit in the LPs for 
science practices described above—is how students develop ideas about the generality of the 
knowledge products they consider. In other words, when we ask students to consider how 
general (or specific) their models or explanations are, what do they consider? While the 
philosophy and science studies literatures have articulated how generality is used as a criterion in 
professional science (Giere, 1988; Popper, 1959; Thagard, 1978), and science education scholars 
have articulated an “upper anchor” for what considering generality might look like in classrooms 
(e.g., Berland et al., 2016; Chinn & Malhotra, 2002), we have not yet documented how students 
consider generality, or what it might look like for them to be in the process of shifting towards 
this more sophisticated understanding. This “loose description” of competencies or outcomes is 
insufficient for robust assessment efforts (NRC, 2014).  

Given this insufficient understanding of students’ consideration of the generality of their 
scientific work, we situate our work as early in the process of elaborating a construct: a focused 
set of knowledge, understanding, and capabilities that an assessment is designed to measure that 
can then be used in later assessment development efforts (NRC, 2014). We draw on what could 
be described as early stages of construct-centered design (Shin et al., 2010) or construct 
modeling (Wilson, 2004) approaches, both of which begin with the development of a construct 
map by defining and unpacking the construct of interest in order to articulate a working 
definition of what is to be assessed (Morell et al., 2017; NRC, 2014; Zangori et al., 2015). In 
defining and unpacking generality, we are taking a “bottom-up” approach that explicitly attends 
to—and attempts to build upon—learners’ initial conceptions (Morell et al., 2017) in a way that 
could contribute to the subsequent development of an LP for generality. 
The Potential of Machine Learning Methods for Inductively Elaborating a Construct 

ML techniques can be particularly useful at an early stage of the assessment development 
process, such as at the stage of elaborating a construct. Machine learning (ML) methods are often 
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considered as supervised (utilizing data and models with an already-known outcome or label) or 
unsupervised (utilizing data and models for outcomes or labels which are not known; Hastie et 
al., 2009). In science education, ML has been used for a variety of science education assessment-
related purposes, such as to increase the efficiency and accuracy of the coding of qualitative 
(e.g., written or image-based) assessment item responses (Gobert et al., 2015; Gerard, and Linn, 
2016; Nehm et al. 2012; Pei et.al, 2019; Zhai et al., 2020). For instance, Gobert and colleagues 
used log-trace data to identify dimensions of students’ planning and carrying out investigations 
(Gobert et al., 2015; Gobert et al., 2013; Gobert et al., 2015). Similarly, scholars have examined 
how supervised ML methods can be reliably used to automatically code students’ written 
explanations and diagrams and models for scientific phenomena (e.g., Gerard & Linn, 2016).  

ML has also been used in science education as a means to enhance construct or content 
validity (e.g., Anderson et al., 2020; Beggrow et al., 2014; Sherin, 2013). For instance, Sherin 
(2013) advocated the role of using “human-based and computational methods in tandem, in a 
manner that increases our confidence in both” (p. 602). He found that unsupervised ML methods 
(married with Natural Language Processing [NLP] techniques) effectively reproduced a human-
based analysis of themes among students’ explanations. In another example, Beggrow et al. 
(2014) showed how an ML approach (combined with NLP) coded students’ ideas about 
scientific phenomena in a way that aligned with the results of human-driven, qualitative coding. 

Though these two examples reflect different goals, they use similar input: namely, the 
content of answers or explanations from students. None of these efforts have focused on 
students’ espoused epistemic understandings. This issue is compounded by the absence of 
explicit rubrics (described in the last section) for students’ epistemic considerations from past 
research.  

In this study, we sought to leverage the unique affordances of ML methods to assess 
students’ epistemic ideas about generality as an important goal for science learning. Specifically, 
we capitalize on ML’s strengths in a) efficiently analyzing large, qualitative data sources, and b) 
revealing new dimensions of the construct being studied. In particular, we focused on the use of 
unsupervised ML methods. Though they are less used in science education than supervised 
methods (Zhai et al., 2020), we conjectured they would be useful for illuminating levels or 
gradations students’ ideas about generality without requiring a precise a priori ordering or 
leveling of the ideas. 

Thus, we were interested in exploring the potential of ML at an earlier stage in the data 
analysis process, given the potential of ML—especially unsupervised ML—for exploring and 
identifying underlying patterns in data. Consequently, we adopted a computational grounded 
theory (CGT) approach which coordinates human-driven, qualitative grounded theory analysis 
with ML methods based on the unique strengths of each (Nelson, 2020). This approach aims to 
simultaneously make the methodological decisions guiding grounded theory more transparent 
(and reproducible) and to provide more stringent guidelines for qualitatively interpreting 
meaningful and valid patterns in data using ML methods. The goals of CGT are distinct from 
other uses of ML early in the analytic process (e.g., Beggrow et al., 2014; Sherin, 2013) in that 
CGT is associated with an expectation that combining human and ML methods in strategic ways 
can produce different results than would likely be produced by using either alone. Accordingly, 
we adopted a CGT approach with the aim of grounded conceptual development: to elaborate and 
iteratively revise a construct map that represented how we characterized students’ consideration 
of the epistemic criterion of generality when constructing model-based scientific explanations. 
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This paper presents a case of using NLP-based ML as part of a CGT approach to elaborate a 
construct map and to explore that construct map’s viability as a framework for coding.  

Method 
Participants 

The participants in this study were 845 middle school students (participating 
longitudinally from the 6th through 8th-grades) from six schools in two different states in the 
Midwest U.S. The students in all participating schools were using the Investigating and 
Questioning our World through Science and Technology (IQWST) curriculum (Krajcik et al., 
2013), a comprehensive science curriculum designed to support students’ meaningful 
participation in science practices (Krajcik et al., 2008). This study was a part of a larger project, 
[removed for peer-review], which aimed to characterize students’ involvement in science 
practices in classroom contexts. 
Curriculum and Context 

The IQWST curriculum consists of twelve content-specific units, three each in Physical 
Sciences, Introduction to Chemistry, Life Sciences, and Earth Sciences. The units are organized 
around a driving question, such as “How can I smell things from a distance?” In each unit, 
students investigate phenomena and gradually build and refine models and explanations of those 
phenomena, culminating in a set of general ideas (or principles) that answer the driving question.  

Teachers in the study had varying degrees of familiarity with the IQWST curriculum. 
Each teacher participated in at least one professional development session provided by members 
of the research team. Table S1 displays information about each school’s enactment of each unit. 
Data Sources 

To collect information about students’ epistemic consideration of generality, we 
administered embedded assessments to the same cohort of students at multiple time points over 
three subsequent years. The assessments were embedded in that they asked about models or 
explanations that students created as a part of typical classroom work. We selected activities 
from the curriculum materials in which students were synthesizing ideas from several 
investigations in the form of a model or an explanation. We then embedded questions about these 
models or explanations into their classroom activities. One of these questions was explicitly 
designed to elicit students’ rationales related to the generality of their model or explanation (see 
Figure 1). 
Figure 1 
Explanation Prompt and Embedded Assessment Question Targeting Generality 
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Note. The purpose box contains the embedded assessment question targeting students’ epistemic 
consideration of generality.  
 
For the analyses presented in this paper, we selected four embedded assessment items from two 
units in the same science content area (6th- and 7th-grade Chemistry) and one in a different 
content area (8th-grade Life Sciences). We chose these units in order to gradually expand the 
variation of responses for the NLP-based, ML methods that we used given the potential 
importance of specific terms which may appear in some units but not others. 

In total, the 845 participants completed 1,885 embedded assessment responses from 
across all five assessment administrations. 29.2% (n = 247) responded to one item; 35.9% (n = 
303) to two; 21.8% (n = 184) to three; 8.9 % (n = 75) to four; and 4.3% (n = 36) to all five. 
Missing responses were the result of absences, incomplete assessments, or the unit not being 
enacted, as not all teachers completed all units (see Table A1). 
Data Analysis 

The data analysis involved the use of unsupervised and supervised ML methods, as well 
as human-driven interpretive analysis. We combined these analytic methods by moving from (1) 
unsupervised ML to (2) human-driven qualitative analysis to (3) supervised ML. 
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Discovering student ideas about the generality of their written model-based 
scientific explanations using unsupervised ML. Because a key affordance of unsupervised ML 
is the ability to detect patterns that may differ from the ideas that humans expected and therefore 
tend to find, we first generated a theorized construct map for generality (Table 1). We used this 
construct map as initial data about what students’ written responses were about as well as to 
theoretically ground pattern interpretation from unsupervised ML analyses. 
Table 1 
Theoretical Construct Map for Students’ Epistemic Consideration of Generality 

Code Category Code Code Description 
A. Single level (either general 
or specific) 

A1. No rationale included Response indicates that the 
explanation is either general 

or specific. 
 A2. Rationale included Response indicates that the 

explanation is either general 
or specific with a rationale for 
why one is suitable or better 

than the other. 
B. Level-crossing B1. Generalizing from  

specific case to a class of 
ideas 

Response describes how the 
explanation about a specific 

case (or phenomena) can 
apply to a general scientific 

idea or principle. 
 B2. Applying a general idea 

to a specific case 
Response describes how a 
general scientific idea or 
principle can be used to 

explain a specific case (or 
phenomena). 

 B3. Boundary conditions of 
generality or specificity 
included 

Response describes the 
conditions under which the 
explanation does (or does 

not) apply. 
 

For this unsupervised ML analysis, we used a subset of 173 student written responses 
from the 7th-grade Chemistry assessment items. These responses were manually transcribed and 
stored in a text file. We processed the documents by tokenization with unigrams, removal of 
stopwords using a common English language dictionary (Benoit et al., 2019), and stemming 
using the Snowball C stemmer (Bouchet-Valat, 2019). We then created a document-term matrix, 
a data structure commonly used for natural text data (Hirschberg & Manning, 2015). This 
document-term matrix had 173 rows (documents) and 345 columns (features). 
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We then used a combined hierarchical agglomerative and k-means clustering technique 
(Bergman & El-Khouri, 1999)1 using the log of the term frequencies2. To determine the optimal 
number of clusters, we balanced concerns of interpretability and parsimony with measures of fit 
following a process similar to that described by Sherin (2013), who aimed to balance such 
tradeoffs (between interpretability and parsimony), settling on a seven-cluster solution as one 
which seemed to “resolve interesting features of the data while producing results . . . that are not 
overly difficult to interpret” (p. 621). 

To interpret the clusters, we used both the most frequent terms as well as the responses 
associated with each cluster in order to understand what ideas about generality were evidenced 
by students’ responses. We found that a nine-cluster solution explained the data best. 

Interrogating patterns in students’ ideas using interpretive qualitative methods to 
create a construct map. A major benefit of using CGT is that it allows for the identification of 
unexpected or surprising patterns that may have been overlooked by human coders due to 
expectation bias or interpretive fatigue (Nelson, 2020). The nine clusters that we used did 
illuminate surprising patterns that differed from our original expectations (see Table 1 above). 
Accordingly, using a constant comparative qualitative coding approach (e.g., Fram, 2013), we 
interrogated these surprising patterns. 
 Specifically, we conducted the first round of descriptive coding followed by iterative 
code mapping (Saldaña, 2016) to identify new, theoretically informed categories based on new 
ways that the responses had been assigned to clusters. As part of this coding, we compared the 
cluster assignment for each response to how we would have categorized the response based on 
the theorized construct map for generality. In this process, we annotated and further 
characterized each response, noting clusters containing groups responses that fit a category from 
the theorized construct map; clusters that contained two or more groups of responses when 
aligned with the theorized construct map categories; and (c) instances in which groups of 
responses that fit a theorized construct map category were distributed across multiple clusters. 
We then determined which of these groupings was meaningful in terms of telling us something 
about how students were thinking about generality, rather than capturing some other feature of 
the group of responses. We then conducted an additional round of pattern coding (Saldaña, 2016) 
to develop concise descriptions of the observed patterns. Through these multiple rounds of 
coding and discussion, we developed a construct map that reflected these meaningful categories. 

Exploring the viability of the construct map as a framework for coding. Last, we 
explored the viability of the construct map as a framework for coding. Our purpose was not to 
demonstrate that the construct map could be used for automated coding at scale, but rather to 
provide some initial validity evidence for the refined coding categories (Nelson, 2020; Sherin, 
2013). We first double-coded all 173 responses with the new construct map categories, 
discussing any disagreements (and clarifying the definitions of the construct map’s categories) 
until 100% agreement was reached. We then used three different algorithms to determine how 

 
1 The approach we used has been shown to lend greater stability to the k-means clustering solution, which can be 
influenced by the starting points for the algorithm. This approach uses the results from hierarchical clustering as the 
starting points for k-means (Bergman & El-Khouri, 1999). In our technique, what is being clustered is the vector 
space representation of each document: in other words, the raw data for the clustering procedure is a row in a table, 
with values ranging from zero to the maximum number of times any term appears across all documents. The default 
distance metric for the hierarchical clustering is cosine similarity. 
2 The R package we created and used (Rosenberg & Lishinski, 2018) is available to anyone via GitHub for anyone 
seeking to carry out a similar two-step cluster analysis in R (R Core Team, 2019); Sherin (2020) provides a very 
similar package in python. 
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reliably the codes that resulted from the application of the construct map could be utilized as a 
part of a supervised ML technique. We used the quanteda.classifiers R package (Benoit et al., 
2019) for implementations of each of the three classification algorithms, from the relatively 
simple (but usually performant for text data) Naïve Bayes (native to the quanteda package), to 
fairly sophisticated: a sequential neural network (via the keras deep learning library; Allaire & 
Chollet, 2019), along with a support vector machine (from the LiblinearR package; Helleputte, 
2017). To determine the accuracy of the classifier, we used a Leave One Out Cross Validation 
(LOOCV) procedure, a procedure which involves using all of the observations in a dataset 
except for one that is “left out” to train a classifier (or any statistical or ML model) to predict the 
code of the left out observation3. procedure is repeated for every observation in the dataset, such 
that every observation is predicted using all of the other observations for the purpose of training 
the classifier. Finally, the agreement between the predictions for every observation obtained 
through this process and the known values for each observation is calculated. To determine the 
agreement, we calculated the percentage agreement and Quadratic Weighted Kappa (Cohen, 
1968) values for the predicted versus actual codes from the LOOCV procedure on the initial set 
of 173 responses. Finally, to explore how accurately the coding frame could be utilized at a 
larger scale, we coded the remaining responses from the full set of 1,885. In this way, we used 
the smaller (n = 173) set of responses to gain an initial understanding of how accurately the 
coding frame could be used as a proof of concept, and the larger set in order to begin to 
understand how effectively the construct map could be used at scale (and across multiple content 
areas). 

Findings 
Exploring Students’ Ideas About Generality 

To interpret the nine clusters generated by the unsupervised ML analysis, we examined 
the most common words in each cluster, read the responses assigned to each cluster, and 
qualitatively developed an overall theme for each cluster (Table 2). After removing two 
ambiguous clusters (2 and 9) and collapsing two clusters that were thematically similar (7 and 8), 
we used the remaining six clusters to refine our construct map. 
 
Table 2 
The Themes, Most Common Words, and Representative Responses For the Nine-Cluster Cluster 
Analysis Solutio 
 

Cluster Theme (Rationale is 
about . . .) Most Common Words Representative Responses 

1: Helping the reader to 
understand why general or 

specific would be better 

substances, interact, different, 
need, form, with, acetic, 

other, stuff, have, those, each, 
ones, important, any 

“Because different substances 
may cause different results” 

 
“Because not all substances 

form something new, and not 
all substances have the same 

reactions in chemical 
reactions, so it can’t explain a 

general way substances 
interact and form new ones. 

 
3 LOOCV is equivalent to k-folds cross-validation when k is equal to the number of observations in the dataset. 
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Since this project focuses on 
copper and acetic acid, the 
model should explain and 

focus on specific substances, 
the copper and acid.”  

2: Unclear/ nonsensical 

yes, good, has, millions, 
situations, now, makes, thats, 
as, wont, general, accurate, 

each, different, specific 

“Yes because” 
“Yes because general is now 

specific” 

3: The clarity and utility of 
the representation when it is 

either general or specific 

specific, better, atoms, 
understand, helps, focuses, 

describe, us, certain, 
represent, used, molecules, 

crowd, easier, want 

“It is a new substance 
because the atoms are the 
same, just rearranged.” 
“We used the specific 

molecules and atoms to 
represent a certain model.” 

4: Showing how and why the 
focus of the model form and 

change 

hows, substance, green, my, 
form, penny, trying, formed, 
they, are, find, out, b, acetate, 

react 

“The model shows not only 
how it works for these 

molecules but how it will 
work for other molecules.” 
“Because you’re trying to 
know how and was it that 
made the penny green.” 

5: Weighing generality or 
specificity against each other 

then, if, just, your, focus, 
general, was, our, things, 

than, explains, any, situation, 
interacts, exactly 

“Because if we didn’t, then 
we wouldn’t know about 

what was happening.” 
“We should focus on this 

because if we draw general 
models we won’t know what 
we are mixing and what the 

product is.” 

6: Similarities and 
comparisons across 

processes, mass, theories, and 
reactions 

reactions, mass, other, sense, 
system, systems, process, 

same, theories, changes, did, 
and, does, do, general, 

evidence 

“The process is the same for 
all chemical reactions, so it 

wouldn’t make sense to 
model each chemical 

reaction.” 
“I think this [it should be 

general] because first of all, 
scientific principles are 

demonstrated in different 
situations, also my claim only 
says ‘In an open system but 
not in a closed system’ and 

mentions nothing about alka-
seltzer.” 

7: Communicating the "main 
point" of the task or lesson  

show, its, thats, people, 
everything, could, point, 

“Because that’s the whole 
point of the model.” 
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answer, b, experiment, thing, 
describes, idea, models 

“To show what is going on in 
the experiment.” 

8: Interpreted with Cluster 7 

were, happened, will, 
focusing, studying, with, air, 
are, than, touching, vinegar, 

without, no, substances, 
wanted, rain 

“I think that because that is 
what we were studying.” 

“Because we’re focusing on 
more than one chemical.” 

9: Unclear/nonsensical 

why, lower, cemig, rauted, 
complicating, gets, or, stay, 
ca, project, since, specific, 

data, explanation, 
phonomenon 

“Because the cemig rauted.” 

 
Interpreting the Clusters and Developing a Construct Map for Use as a Framework for 
Coding  

Next, we leveraged qualitative analysis tools to interpret the six clusters in light of our 
theorized construct map, with the aim of developing a construct map that reflected both 
theoretical aspects of generality and the themes in students’ responses represented by the results 
of the cluster analysis—and could potentially be used as a framework for coding. Specifically, 
we conducted the first round of descriptive coding followed by iterative code mapping (Saldaña, 
2016) to identify new, theoretically informed categories based on new ways that the responses 
had been assigned to clusters. We then conducted an additional round of pattern coding (Saldaña, 
2016) to develop concise descriptions of the observed patterns. The resulting construct map is 
displayed in Table 3.  

As we engaged in these qualitative coding activities, we made several categorizations that 
differed from our initial construct map. First, we distinguished between responses that had been 
characterized as a “single level” (category A in Table 1) in a new way. Instead of simply 
indicating whether a response included a rationale, for instance, we coded for specific possible 
single-level rationales, including communicating clearly or articulating a mechanism. Second, 
we found that the codes in the theorized construct map for “level crossing” (category C in Table 
1) were not distinguished by the direction of the reasoning students were exhibiting (i.e., whether 
they were generalizing a specific idea or applying a general idea to a particular case). Instead, 
students tended to see the task as a general/generalizable one despite the specific nature of its 
context (code 4A in Table 3); defend their choice of either generality or specificity by negating 
the other option (code 4B in Table 3); state that their response could be used to explain or predict 
in other situations (code 4C in Table 3); or articulate how their response could be used to explain 
other situations by showing how the mechanism was generalizable (code 5 in Table 3). Last, a 
group of responses evidencing mechanistic (or “how and why”) thinking was not a part of our 
theorized construct map but was identifiable in one of the clusters (code 3 in Table 3).  
Table 3 
Construct Map for Epistemic Consideration of Generality 
 

Construct Level Construct Level Subtheme 
 

“My response being specific or general is better 
because . . .” 

Construct 
Level 

Description 
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0. Not codable Not codable Response is 
blank, 
unclear, or 
incomplete. 

1. Literal Task Goal “That’s what we did” Response 
emphasizes 
the alignment 
of 
explanation 
and the 
worksheet 
instructions 
or activity 
task. 

2. Communication A. “It is more ‘right’” Response 
emphasizes 
criteria such 
as clarity, 
detail, or 
accuracy of 
information. 

B. “It supports learning or understanding” Response 
emphasizes 
an audience’s 
knowing, 
thinking, or 
the need to be 
convinced. 

3. Mechanism “It represents the mechanism” Response 
emphasizes 
that it is 
better to show 
or explain a 
phenomenon 
in terms of 
how and why 
something 
occurs. 

4. Generality A. “The goal was to understand something general 
about this idea” 

Response 
identifies the 
bigger picture 
learning goal 
(beyond the 
workbook’s 
instructions) 
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B. “It should be A, because it shouldn't be B” (where 
A is either general or specific, and B is the opposite) 

Response is 
part of an 
argument 
making an 
implicit claim 
against either 
generality or 
specificity. 

C. “It applies, generates, or predicts (or not)” Response 
involves an 
argument for 
the generality 
or specificity 
of their 
product 
because it can 
help them 
explain or 
predict more 
situations. 

5. Generality + 
Mechanism 

“The mechanism is generalizable” Response 
identifies that 
it is the 
process or 
mechanism 
that is 
general; 
demonstrating 
how that 
mechanism 
transfers. 

 
 
The Viability of the Initial Construct Map as a Framework for Coding 

After developing the construct map, we explored its viability as a framework for coding 
the subset of 173 responses using supervised ML methods. We found that the LOOCV Weighted 
Kappa ranged from .47 (for the Naïve Bayes algorithm) to .56 (for the Support Vector Machine; 
Table 4), indicating moderate agreement with the manual codes (Landis & Koch, 1977). We 
then calculated the LOOCV percentage agreement and Weighted Kappa for this larger set of 
human-coded responses (n = 1,885), finding that it ranged from .62 (Naïve Bayes) to .66 
(Support Vector Machine; Table 4), indicating substantial agreement with the manual codes 
(Landis & Koch, 1977). Thus, the accuracy increased with the use of additional coded data and 
was found to be best for the Support Vector Machine classification algorithm. This result is 
promising for the potential of conducting automated coding using the construct map as a 
framework for coding, though it will likely require more sophisticated techniques for algorithm 
refinement. 
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Table 4 
The Reliability of the Application of Supervised ML Classification Algorithms 

N Classification Algorithm Percentage 
Agreement 

Quadratic Weighted 
Kappa 

169 
Naïve Bayes .60 .47 

Support Vector Machine .59 .56 
Sequential Neural Network .56 .53 

1,885 
Naïve Bayes .66 .62 

Support Vector Machine .70 .66 
Sequential Neural Network .70 .65 

Note. These values compare the predictions from each of the supervised ML classification 
algorithms to the codes from human-based coding. 
 

Discussion 
We used ML early in the assessment development process to develop and revise a 

construct map for students’ consideration of generality. We did so by strategically combining 
unsupervised ML methods with interpretive, human-driven coding. The methodological 
approach used in this paper aligns with broader calls for integrating ML into educational research 
methods in a way that is responsive to the aims of educators (e.g., Shaffer, 2017) and the push 
for values-driven ML applications (e.g., Greene et al., 2019). In this section, we discuss our key 
findings in light of research on efforts to integrate ML into science education assessment. 
Computational Grounded Theory and Using Unsupervised Machine Learning Methods 

While ML is becoming more common for educational assessment and measurement 
(Burrows et al., 2015), applications of unsupervised methods are, at present, relatively 
uncommon (Zhai et al., 2020). One reason for this may be the absence of guidance about how 
they can be used to reach assessment-related ends. We presented a proof-of-concept example of 
a way to integrate unsupervised ML methods in a theoretically grounded way. Thus, 
unsupervised methods may be especially valuable as a part of a larger ML process, one which 
involves not only unsupervised and supervised methods (which but a few science education 
studies have done; e.g., Wiley et al., 2017), and human-based, qualitative methods. Such a 
process can lead to codes that reflect both empirical patterns in the data and the influence of the 
theory, prior knowledge, and value-laden priorities and insights that human analysts bring to 
interpreting data.  

The development of a construct map is an important and challenging part of the broader 
assessment process (DeBarger et al., 2013; Harris et al., 2019). To address this challenge, we 
used an unsupervised ML method, cluster analysis (Gareth et al., 2014), to identify clusters of 
responses. While some of these clusters reflected our original theoretical frame, others reflected 
new ways of parsing the theoretical categories or new categories altogether. These new patterns 
allowed us to elaborate and to better “flesh out” the coding scheme to say more about the range 
of ways that students considered the generality of their explanations. 

A few existing studies have used similar approaches. Sherin (2013) carried out a similar 
cluster analytic approach as a means of providing evidence for the validity of the original 
qualitative coding of students’ conceptual understanding of seasons. Similarly, Anderson et al. 
(advance online publication) used an NLP-based, topic modeling approach to establish the 
content-related validity of science education assessment items, and Zehner et al. (2016) 
compared human and machine coding of open-ended written responses from the Programme for 



18 
COMBINING MACHINE LEARNING AND QUALITATIVE METHODS 

International Student Assessment (PISA) assessment. These studies all use computational 
methods to provide validity evidence for qualitative coding. 

What distinguishes our use of ML is our focus on developing a construct map. In 
addition, we were looking at students’ epistemic, rather than conceptual, ideas. To our 
knowledge, this is the first examination of whether NLP methods can be used to identify 
epistemic themes in students’ responses, which are abstract and not necessarily particular to 
content- or subject- matter vocabulary. We demonstrated that they can, with moderate (with a 
subset of the data) and substantial (for the larger set of coded data) accuracy. 

We posit that a methodological process that strategically combines computational and 
human-driven coding methods can also lead to a construct map that could be used more 
seamlessly with later—perhaps larger-scale—applications of ML, through supervised methods. 
Because the construct map was developed in part through the use of unsupervised ML methods 
(which utilized natural text), we saw the initial viability of the construct map as a framework for 
coding, especially when we coded a larger number of responses. While the degree of accuracy 
that we observed is lower than others have reported in supervised applications (e.g., Beggrow et 
al., 2014), it compares to most other uses of ML for science assessment (e.g., Table 1 from 
Gerard and Linn, 2016 and Table A2 from Zhai et al., 2020). Also, importantly, because of the 
role of our human-driven analysis, the construct map is better aligned with the theorized aspects 
of generality with which we began and kept in mind as we interpreted the groupings of students’ 
responses. For this reason, it may be more theoretically meaningful to those studying epistemic 
considerations. 
Assessing Students’ Considerations of the Generality of Their Model-Based Explanations 

Drawing upon scholarship and curriculum development efforts that emphasize 
involvement in knowledge-building practices (Ford & Forman, 2006; Lehrer & Schauble, 2006; 
Sandoval, 2005; Schwarz et al., 2009), and the epistemic considerations undergirding their 
participation in those practices (Berland et al., 2016; Krist, 2020; Manz, 2015; Ryu & Sandoval, 
2012) we sought to center students’ epistemic ideas as a key learning outcome. Most assessment 
efforts have focused explicitly on the structure of students’ accounts, leading to the absence of 
the construct underlying the how and why aspects of students’ involvement in science practices, 
especially with respect to the key consideration of generality. 
 Our approach to assessing students’ epistemic ideas first relied upon eliciting students’ 
rationales about their model-based explanations, then analyzing these rationales. Specifically,  
we used questions embedded in students’ everyday classroom activities that asked them to reflect 
upon the generality (or specificity) of their model-based explanations. We then analyzed 
students’ responses for their rationales for generality or specificity using a methodological 
approach that was responsive to the ideas students expressed through their written responses as 
well as theoretical aspects of generality. Our analysis resulted in a construct map that is both 
theoretically aligned and reflective of the empirical patterns in the data—some of which we did 
not anticipate.  

Such a process is especially important given the nature of epistemic considerations are 
not a discrete idea or concept, but a constellation of ideas that students bring to the task of 
motivating their knowledge-building work. If a key goal for science is keeping content and 
practices coupled while also measuring something across grades and content areas (DeBarger et 
al., 2013), this construct map may serve as useful guidance for researchers interested in 
supporting students’ meaningful participation in science knowledge-building practices. 
Similarly, embedded assessments containing comparable prompts may be useful to scholars 
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seeking to study learning that spans more than one unit or content area. Moreover, the 
combination of embedded assessments and a CGT approach may be useful to other researchers 
studying complex constructs, particularly in light of calls for “a move away from reliance on the 
efficiency and affordability of multiple-choice items, and towards the use of more authentic 
tasks” (Haudek et al., 2019, p. 1; see also Laverty et al., 2016). 
Limitations and Recommendations for Future Research 

Some limitations of this work concern what we see as a trade-off between the goals of 
science assessment and ML: we analyzed responses in more than one content area. We recognize 
that studying multiple units may have led to a less-optimal supervised ML application and that 
more sophisticated data pre-processing (e.g., using more sophisticated stopword removal 
techniques) and/or validation efforts (e.g., examining for what content areas agreement between 
human and automated codes was better) could yield benefits.). Yet, we intended to develop a 
construct that could be used across science content areas and practices. Our results do present an 
effective proof of concept: although we developed these codes that do seem to be very specific to 
the task at hand (e.g., acetate is a key term for Cluster 4; see Table 3), when we added content 
areas (by coding all 1,885 responses, in contrast to the 173 we used as a proof-of-concept), the 
construct map was able to be used effectively. These results suggest that conducting more 
nuanced (and time-intensive) analyses would be worthwhile to continue examining the use of 
ML techniques in analyzing students’ epistemic ideas. 

 Another limitation concerns our modifications to the CGT method, particularly by 
analyzing a smaller corpus of student responses at first (and through the clustering approach, step 
1, and the refinement of the construct map, step 2), after which we manually coded a larger 
number of student responses. In our future uses of the method, we would likely analyze the entire 
corpus of available student responses and revise and apply the construct map based on this larger 
dataset from the outset, and so we recommend for researchers to do the same—and to consider 
how the premise of CGT (that ML and human-driven interpretive coding can be integrated in 
useful ways) can be interpreted and applied creatively in other, future applications. Last, while 
our data was longitudinal in nature, few students had data from all five time points. A 
longitudinal dataset with fewer missing responses may reveal even more nuance in the ways in 
which students’ considered the epistemic criterion of generality.  

Future research could also consider other types of data sources for use as part of an 
assessment approach similar to that used in this study. In particular, we highlight the potential of 
using ML techniques with audio and visual data as a highly-complex, less-utilized (apart from in 
exclusively qualitative methods) source of data to capture an even more authentic and embedded 
version of students’ participation in science practices. 

Conclusion 
 Assessing students’ involvement in science practices as emphasized in recent approaches 
in science education presents grand challenges to science education scholars and assessment 
experts (Pellegrino, 2013). In this study, we sought to use ML for a novel purpose in science 
assessment: developing a construct map, which can be used to code students’ written responses. 
We showed how ML and human-based methods can be integrated in a way that may have wide 
application, particularly as the broader science education community addresses the question of 
how to measure science learning in a way that does not minimize and simplify, but instead 
highlights the knowledge-building work of science learning.  
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Table S1 
Information about Participating Teachers and Schools 

School Grade # of Science 
Teachers 

# of Students Units 

Jefferson Middle 
School 

6 2 228 6P, 6C, 6B 
  

7 3 122 7C, 7P, 7B 

8 3 205 8P, 8ES, 8C, 8B 

North Middle 
School 

6 2 
  

173 6P, 6C, 6B, 6ES 
  

7 2 228 7C, 7P, 7B, 7ES 

8 2 227 8P, 8ES, 8C, 8B 

Oak Middle School 6 1 100 6P, 6C, 6B 
  

7 1 92 7C, 7P, 7B 

8 1 107 8C, 8B 

Mountain View 
School 

6 1 51 6P, 6C, 6B 
  

7 1 86 7C, 7P, 7B (1/2) 

8 2 39 7B (1/2), 8ES, 8B 
(3/4), 7ES 
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Hillel Day School 6 1 37 6P, 6C, 6B 
  

7 1 40 7C, 7P, 7B 

8 3 42 8P, 8C, 8B 

STEM School 6 1 57 6P, 6C, 6B, 6ES 
  

7 1 102 7C, 7P, 7ES 

8 1 102 7B, 8ES, 8B (1/4) 

 
 
 


